

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

THE CASE OF THE PROPERTY OF THE PARTY OF THE

HDL-TR-2004

December 1982

Effect of Frequency-Dependent Soil Parameters on Reflection Coefficients

Norman V. Hill

C PERTIES

Marie Communication Communicat

principal for forth following displacement without a

83 02 022 037

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION		READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
HDL-TR-2004	40-A1-4798	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
_		Technical Report
Effect of Frequency-Dependent Soil Para	ameters	
on Reflection Coefficients		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)
Norman V. Hill		
9. PERFORMING ORGANIZATION NAME AND ADDRES	<u> </u>	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Harry Diamond Laboratories		l <u> </u>
2800 Powder Mill Road		Program Element: 62120A
Adelphi, MD 20783		DA: 1L162120AH25
11. CONTROLLING OFFICE NAME AND ADDRESS	- · · · · · · - · · · · · · · · · · · ·	12. REPORT DATE
U.S. Army Materiel Development		December 1982
and Readiness Command		13. NUMBER OF PAGES
Alexandria, VA 22333		34
14. MONITORING AGENCY NAME & ADDRESS(II dillon	ent from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		154, DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>
17. DISTRIBUTION STATEMENT (of the abetract entere	d in Block 20, if different fro	en Report)
16. SUPPLEMENTARY NOTES HDL Project No. X751E2 DRCMS Code: 612120H250011		
19. KEY WORDS (Continue on reverse side if necessary	and identify by block number;)
The state of the s	reflected wave density	
The degree with which electroms flecting plane is strongly dependen tromagnetic energy from a surface	agnetic pulse (EMP) it on the nature of the can be accurately	e plane. The reflection of elec- described mathematically, and
equations which predict these fields Although this is the case, some predicts are independent of frequency	redictive analysis use	es models for the earth's surface

DD 1 JAN 79 1473

1 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Ente 20. ABSTRACT (Cont'd) This report describes the varieties of electrical properties with frequency and moisture content. It applies these variations to a reflected EMP and assesses the energy difference between models which use parameters independent of frequency and those which use varying parameters. Finally, it discusses the variation of soil properties with depth and predicts the magnitude of energy, above the ground, which may result from this variation.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

CONTENTS

	•	Page
1.	INTRODUCTION	. 7
2.	SOIL PARAMETERS	. 7
3.	REFLECTION COEFFICIENTS FROM SOILS	. 12
	3.1 Single Reflection	. 12 . 18
4.	ERROR ANALYSIS	. 24
5.	CONCLUSION	. 27
LITE	RATURE CITED	. 27
DIST	RIBUTION	. 29
	FIGURES	
1.	Universal network model	. 8
2.	Relative dielectric constant versus frequency at sample points between 0.5 and 600 MHz	. 11
3.	Conductivity versus frequency at sample points between 0.5 and 600 MHz	. 11
4.	Polarization normal to plane of incidence	. 12
5.	Polarization parallel to plane of incidence	. 12
6.	Magnitude of reflection coefficients ($R_{\rm H}$) using varying-parameter model at 5-, 10-, 15-, and 20-percent moisture	. 15
7.	Phase of reflection coefficients (R_H) using varying parameter model at 5-, 10-, 15-, and 20-percent moisture	. 16
8.	Magnitude of reflection coefficients (R_V) using varying-parameter model at 5-, 10-, 15-, and 20-percent moisture	16
9•	Phase of reflection coefficients (R _V) using varying-parameter model at 5-, 10-, 15-, and 20-percent moisture	. 17

FIGURES (Cont'd)

		Page
10.	Singly reflected wave	. 17
11,	Multiply reflected wave	. 18
12.	Magnitude of multiple reflection coefficient (R _H) for a two- layer earth. Varying-parameter model is used for upper layer (0.5 m thick), and network model is used for lower layer (infinite half plane)	
13.	Magnitude of multiple reflection coefficient (R _H) for a two- layer earth. Varying-parameter model is used for upper layer (1 m thick), and network model is used for lower layer (infinal half plane)	
14.	Magnitude of multiple reflection coefficient (R _H) for a two- layer earth. Varying-parameter model is used for upper layer (2 m thick), and network model is used for lower layer (infinite half plane)	. 22
15.	Magnitude of multiple reflection coefficient (R _V) for a two- layer earth. Varying-parameter model is used for upper layer (0.5 m thick), and network model is used for lower layer (infinite half plane)	. 23
16.	Magnitude of multiple reflection coefficient (R _V) for a two- layer earth. Varying-parameter model is used for upper layer (1 m thick), and network model is used for lower layer (infin- half plane)	
17.	Magnitude of multiple reflection coefficient (R _V) for a two- layer earth. Varying-parameter model is used for upper layer (2 m thick), and network model is used for lower layer (infini- half plane)	
18.	Comparison between reflection coefficient as predicted by varying regional parameter model, network model (both at 10-percent moisture), and constant-parameter model (conductivity = 7 mmho/m, dielectric constant = 15)	

TABLES

		rage	
1.	Coefficient an for Universal Soil	9	
2.	Percentage of Error for Variable-Parameter Model (Standard) and Network Model for Various Moisture Contents		
3.	Percentage of Error for Variable-Parameter Model (Standard) and	26	

Accession For				
NTIS	GRAŁI	K		
DTIC	TAB			
Unant	nounced			
Justi	fication_			
PER CALL JC				
Ву				
Distribution/				
Availability Codes				
Avail and/or				
Dist	Special	•		
١.,				
1 1	1 1			
17	1 1			

1. INTRODUCTION

If the conductivity and dielectric constant of two distinct media are known, the amount of electromagnetic energy which will be reflected at their interface can be related to the incident energy through the Fresnel equations. On a large scale, the earth-air boundary is an example of such an interface. In comparison to the earth, the electrical properties of the air can be considered relatively independent of regional variations. Therefore, obtaining typical electrical properties of the soil in a particular region becomes a primary objective if the reflection coefficients are desired.

With regional values, the reflection of electromagnetic energy, such as that encountered after a high-altitude nuclear burst, can be calculated. Without regional values, however, the spectrum of energy reflected may be inadequately predicted. Any method of approximating conductivity and dielectric constant will produce an error if it excludes regional variables such as structure or mineral content, or if it excludes frequency and moisture content. To determine whether this error should cause significant concern, the actual values for conductivity and dielectric constant can be measured and compared with predicted values. In this way, the reflected energy spectrum can be more accurately predicted.

2. SOIL PARAMETERS

In order to determine the energy of a pulse wave reflected from the surface of the earth, the electrical properties of this soil/air boundary must be known. The Fresnel equations, which describe the reflection of electromagnetic energy, require that the conductivity, permittivity, and permeability of both the air and the soil be known. Under normal conditions, and in comparison to soil, the electrical properties of air are approximately equal to those of free space. Therefore, determining the electrical properties of the earth becomes a primary concern.

Several studies have been conducted concerning the electrical properties of the soil. The results of these studies state that the conductivity (σ) and permittivity (ε) can be predicted at a specified frequency, if the moisture content is known. The permeability (μ), which is a function of the ferrous mineral content, deviates slightly from that of free space in most regions.

Scott 1 measured numerous samples over the frequency range of 10^2 to 10^6 Hz. After averaging his data, he produced a set of curves for

 $^{^{1}}J$ H. Scott, Electrical and Magnetic Properties of Rock and Soil, U.S. Geological Survey, Note 18 (1966).

conductivity and dielectric constant as functions of frequency. These curves, which have become known as Scott's universal curves, have been curve fit with a second-order surface fit and are mathematically represented in equations (1) and (2).

Scott's curve fit for conductivity is

$$K = -0.604 + 1.640W - 0.062F + 0.062W^2 - 0.070FW + 0.021F^2;$$
 (1)

the curve fit for relative dielectric constant is

$$D = 4.905 + 1.308W - 0.971F + 0.111W^2 - 0.160FW + 0.059F^2,$$
 (2)

where

 $K = log_{10}$ of conductivity (mmho/m),

 $D = log_{10}^{10}$ of dielectric constant $(\varepsilon/\varepsilon_0)$,

 $W = log_{10}$ of water content (percent by volume), and

 $F = log_{10}$ of frequency (Hz).

Since Scott's work encompasses a large variety of laboratory-measured soil samples (samples which correlated well with field measurements), equations (1) and (2) give an average of conductivity and dielectric constant over various regions.

C. L. Longmire developed a time-domain representation called the universal RC network model (fig. 1). The basic assumption of this model is that the soil can be regarded electrically as an equivalent network of resistors and capacitors. Longmire made no laboratory measurements, but by using Scott's curves and data that he received by private consultation with Wilkenfeld, he extended the expected validity of his model over the frequency range of 10^0 to 3×10^{12} Hz.

Figure 1. Universal network model.

²C. L. Longmire, A Universal Impedance for Soils, Defense Nuclear Agency, DNA 3788T (1975).

Longmire's model states that

$$C_{\infty} = \varepsilon_0 \varepsilon_{\infty}$$
 , $C_n = \varepsilon_0 a_n$, $R_n = \frac{1}{2\pi f_n C_n}$,

where

C is capacitance,

a is a constant,

R is resistance,

R_O is the resistance of the circuit that is asymptotically approached as frequency is decreased,

σ is conductivity,

f is frequency, and

the subscript ∞ indicates a value which is asymptotically approached as frequency is increased.

The relative dielectric constant of the soil is

$$\varepsilon_{r} = \varepsilon/\varepsilon_{0} = \varepsilon_{\infty} + \sum_{n=1}^{N} \frac{a_{n}}{1 + (f/f_{n})^{2}}$$
, (3)

and the conductivity is

$$\sigma = \sigma_0 + 2\pi\varepsilon_0 \sum_{n=1}^{N} a_n f_n \frac{(f/f_n)^2}{1 + (f/f_n)^2} \quad (mho/m) \quad , \tag{4}$$

where f_n accounts for moisture content. Table 1 gives coefficients for universal soil as derived by Longmire's model.

TABLE 1. COEFFICIENT an FOR UNIVERSAL SOIL

n	a _n	n	$\mathbf{a}_{\mathbf{n}}$	n	a _n
1	3.40 × 10 ⁶	6	1.33 × 10 ²	11	9.80 × 10 ⁻¹
2	2.74×10^5	7	2.72×10	12	3.92×10^{-1}
3	2.58×10^4	8	1.25 × 10	13	1.73×10^{-1}
4	3.38×10^3	9	4.80		
5	5.26×10^2	10	2.17		

To obtain a standard for evaluating the error which might be incurred by applying the results of this network model in a region which does not follow the typical soil parameters, laboratory measurements were made of ε_{r} and σ for five samples of soil taken from the Harry Diamond Laboratories, Woodbridge Research Facility, Woodbridge, VA. The National Bureau of Standards conducted these measurements over the frequency range of 5 × 10 6 to 6 × 10 8 Hz. Following Scott's work, a second-order surface fit was made for these data as given in equations (5) and (6):

$$D = 5.886 - 1.045F - 2.055W + 0.077FW + 0.056F^2 + 1.180W^2 , \qquad (5)$$

$$K = -3.233 + 0.6453F - 0.448W - 0.105FW - 0.0113F^2 + 0.8876W^2$$
. (6)

Equations (5) and (6) are henceforth referred to as the varying regional parameter equations.

The averaged values at 5-, 10-, 15-, 20-, and 25-percent moisture content for conductivity and dielectric constant are shown in figures 2 and 3. Also shown are the values predicted by the Longmire universal network model for 10-percent moisture content (eq (3) and (4)).

As can be seen from figure 3, averaged values for conductivity are considerably below the values predicted by the network model. Since these data were obtained in a region of higher than average rainfall, and taken from the uppermost soil, it is believed that their values indicate only that the surface soil possesses a low conductivity. Several other field measurements were taken near the laboratory, measurements which indicate that the conductivity of the soil increases sharply a few feet below the surface of the earth. Unfortunately, the samples were too few to determine where the sharp increase took place nor what conductivity the soil might possess in the lower strata.

When either conductivity or dielectric constant changes from one homogeneous medium to another, as is the case at the Woodbridge Research Facility, a second medium for reflection is provided. Because these boundaries are close to each other, the energy which is transmitted through the primary boundary will undergo a second reflection at the secondary boundary. The wave which will ultimately be seen by an observer will be a combination of an incident wave, a primary reflected wave, and a series of multiply reflected waves. This problem is discussed briefly after the reflection from the primary boundary is discussed.

Figure 2. Relative dielectric constant versus frequency at sample points between 0.5 and 600 MHz. Longmire's curve for 10-percent moisture is also shown for comparison.

Figure 3. Conductivity versus frequency at sample points between 0.5 and 600 MHz. Longmire's curve for 10-percent moisture is also shown for comparison.

3. REFLECTION COEFFICIENTS FROM SOILS

3.1 Single Reflection

Soils, like most common materials, fall in the category of lossy dielectrics. Fresnel's equations (as discussed in many electromagnetics texts³) describe the reflection/transmission process of electric and magnetic components of an electromagnetic field across the boundaries of two distinct media. The following equations relate to figures 4 and 5.

For the E field normal to the plane of incidence,

$$E_{1} = \frac{\mu_{2}k_{1}(\cos\theta_{2} + \cos\theta_{0})}{\mu_{2}k_{1}\cos\theta_{2} + \mu_{1}k_{2}\cos\theta_{1}} E_{0} , \qquad (7)$$

$$E_{2} = \frac{\mu_{2}^{k}_{1} \cos \theta_{0} - \mu_{1}^{k}_{2} \cos \theta_{1}}{\mu_{2}^{k}_{1} \cos \theta_{2} + \mu_{1}^{k}_{2} \cos \theta_{1}} E_{0} . \tag{8}$$

Figure 4. Polarization normal to plane of incidence.

Figure 5. Polarization parallel to plane of incidence.

 $^{^3}$ J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Co. (1941).

For the H field normal to the plane of incidence,

$$H_{1} = \frac{\mu_{1}k_{2}(\cos \theta_{2} + \cos \theta_{0})}{\mu_{1}k_{2}\cos \theta_{2} + \mu_{2}k_{1}\cos \theta_{1}} H_{0} , \qquad (9)$$

$$H_{2} = \frac{\mu_{1}k_{2} \cos \theta_{0} - \mu_{2}k_{1} \cos \theta_{1}}{\mu_{1}k_{2} \cos \theta_{0} + \mu_{2}k_{1} \cos \theta_{1}} H_{0} , \qquad (10)$$

where $\boldsymbol{\theta}$ is angle of incidence, and $\boldsymbol{k}_{\hat{i}}$ is the complex propagation constant defined by

$$k_i^2 = j\omega\mu_i(\sigma_i - j\omega\epsilon_i)$$
,

where $\omega = 2\pi f$.

Through Snell's law

$$\sin \theta_0 = \sin \theta_2$$
 , and $k_2 \sin \theta_0 = k_1 \sin \theta_1$.

The reflection coefficients can be written

$$R_{H} = \frac{E_{2}}{E_{0}} = \frac{\mu_{2}k_{1} \cos \theta_{0} - \mu_{1}\sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta_{0}}}{\mu_{2}k_{1} \cos \theta_{0} + \mu_{1}\sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta_{0}}}$$

for E normal to the plane of incidence, and

$$R_{V} = \frac{H_{2}}{H_{0}} = \frac{\mu_{1}k_{2}^{2}\cos\theta_{0} - \mu_{2}k_{1}\sqrt{k_{2}^{2} - k_{1}^{2}\sin\theta_{0}}}{\mu_{1}k_{2}^{2}\cos\theta_{0} + \mu_{2}k_{1}\sqrt{k_{2}^{2} - k_{1}^{2}\sin\theta_{0}}}$$

for H normal to the plane of incidence.

By considering a typical air/earth interface, these formulas can be further simplified. Medium 2 (characterized by σ_2 , μ_2 , ϵ_2) is that of the earth, and medium 1 (characterized by σ_1 , μ_1 , ϵ_1) is that of air; since

$$\mu_1 = \mu_2 = \mu_0$$
,
 $\epsilon_1 = \epsilon_0$,
 $\sigma_1 = 0$,

the reflection coefficients can be simplified to

$$R_{H} = \frac{\cos \theta_{0} - \sqrt{\left(\epsilon_{r} - j \frac{\sigma_{2}}{\epsilon_{0} \omega}\right) - \sin^{2} \theta_{0}}}{\cos \theta_{0} + \sqrt{\left(\epsilon_{r} - j \frac{\sigma_{2}}{\epsilon_{0} \omega}\right) - \sin^{2} \theta_{0}}}$$
(11)

and

$$R_{V} = \frac{\left(\varepsilon_{r} - j\frac{\sigma_{1}}{\varepsilon_{0}\omega}\right)\cos\theta_{0} - \sqrt{\left(\varepsilon_{r} - j\frac{\sigma_{1}}{\varepsilon_{0}\omega}\right) - \sin^{2}\theta_{0}}}{\left(\varepsilon_{r} - j\frac{\sigma_{1}}{\varepsilon_{0}\omega}\right)\cos\theta_{0} + \sqrt{\left(\varepsilon_{r} - j\frac{\sigma_{1}}{\varepsilon_{0}\omega}\right) - \sin^{2}\theta_{0}}},$$
 (12)

where $\epsilon_r=\epsilon_1/\epsilon_0$ and subscripts H and V refer to horizontal and vertical components.

Figures 6, 7, 8, and 9 show the magnitudes and phases of reflection coefficients $R_{\rm H}$ and $R_{\rm V}$ using varying regional parameter equations. The angle of incidence is 60°.

The incident and reflected waves combine to form what is generally referred to as the total wave. These equations have been developed in other texts⁴ and are restated here:

M. A. Messier, The Effects of Ground Reflection on Observed EMP Waveforms, Defense Nuclear Agency, DNA 3370T (1974).

$$E_{H} = E_{0} \left[1 + R_{H} e^{-j(h/\lambda)} \right] \cos \phi , \qquad (13)$$

$$E_{V} = E_{0} \left[1 + R_{V} e^{-j(h/\lambda)} \right] \sin \phi \cos \theta , \qquad (14)$$

$$E_{R} = E_{0} \left[1 + R_{V} e^{-j(j/\lambda)} \right] \sin \phi \cos \theta , \qquad (15)$$

where

 $\lambda \equiv wavelength,$

h = distance between point of reflection and observer,

 $E_R = radial wave, and$

 $E_0^R = incident wave.$

These equations apply to the geometry of figure 10 and assume that the distance between the source of the pulse and either the observer or the earth is much greater than the distance between the earth and the observer.

Figure 6. Magnitude of reflection coefficients $(R_{\rm H})$ using varying-parameter model at 5-, 10-, 15-, and 20-percent moisture.

Figure 7. Phase of reflection coefficients ($R_{\rm H}$) using varying-parameter model at 5-, 10-, 15-, and 20-percent moisture.

Figure 8. Magnitude of reflection coefficients ($R_{\rm V}$) using varying-parameter model at 5-, 10-, 15-, and 20-percent moisture.

Figure 9. Phase of reflection coefficients (R_V) using varying-parameter model at 5-, 10-, 15-, and 20-percent moisture.

Figure 10. Singly reflected wave.

3.2 Multiple Reflection

If there is a marked increase in soil conductivity at some with, as is the case for most of the eastern seaboard, 5 a transmitted is eastern ill undergo a primary reflection and a series of multiple reflections. Figure 11 depicts this process. The total wave seen by an observer just above the earth will be composed of an incident wave, a primary reflected wave, and a series of multiply reflected waves. 6

The multiply reflected pulse is a geometric series:

$$E_{r} = E_{0} [1 + e^{j\Delta_{1}} (\rho + \tau \tau' \rho' e^{j\Delta_{2}} + \tau \tau' \rho'^{2} \rho'' e^{j2\Delta_{2}} + \tau \tau' \rho'^{3} \rho''^{2} e^{j3\Delta_{2}} ...)]$$
(16)

(for zero polarization)

where

 $E_r = resultant E field,$

 $\bar{\rho}$ = reflection coefficient,

 $\tau = transmission coefficient,$

 Δ_1 and Δ_2 account for phase delay and attenuation in medium 1 and medium 2, respectively, and

primes indicate the number of times the wave has been reflected.

Figure 11. Multiply reflected wave.

⁵E. D. Sunde, Earth Conduction Effects in Transmission Systems, D. Van Nostrand Co. Inc. (1968).

⁶M. V. Klein, Optics, T. Wiley and Sons Inc. (1970).

Equation (16) can be reduced to the closed-form equivalent:

$$E_{r} = E_{0} \left[\tau \tau^{\prime} \rho^{\prime} e^{j\Delta_{1}} \left(\frac{1}{1 + \rho \rho^{\prime} e^{j\Delta_{1}}} \right) \right] . \tag{17}$$

Phase delay and attenuation can be found by

$$\Delta_1 = \frac{2h\omega}{\cos\theta_1} \left| \frac{\mu_2 \varepsilon_2}{2} \sqrt{1 + \left(\frac{\sigma_2}{\omega \varepsilon_2}\right)^2} - 1 \right|^{1/2} ,$$

$$\Delta_2 = \Delta_1 + \frac{2h\omega}{\cos\theta_1} \left| \frac{\mu_2 \varepsilon_2}{2} \sqrt{1 + \left(\frac{\sigma_2}{\omega \varepsilon_2}\right)^2} + 1 \right|^{1/2},$$

with

$$\rho_{\rm H} = \frac{k_1 \cos \theta_0 - \sqrt{k_2^2 - k_1^2 \sin^2 \theta_0}}{k_1 \cos \theta_0 + \sqrt{k_2^2 - k_1^2 \sin^2 \theta_0}} , \tag{18}$$

$$\rho_{H}' = \frac{\sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta} - \sqrt{k_{3}^{2} - k_{1}^{2} \sin^{2} \theta}}{\sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta} + \sqrt{k_{3}^{2} - k_{1}^{2} \sin^{2} \theta}},$$
(19)

$$\tau_{H} = \frac{2k_{1} \cos \theta_{0}}{k_{1} \cos \theta_{0} + \sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta_{0}}},$$
(20)

$$\tau_{H}^{2} = \frac{2\sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta}}{\sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta} + \sqrt{k_{3}^{2} - k_{1}^{2} \sin^{2} \theta}} , \qquad (21)$$

for E-field normal to plane of incidence, and

$$\rho_{\mathbf{V}} = \frac{k_{2}^{2} \cos \theta_{0} - k_{1} \sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta_{0}}}{k_{2}^{2} \cos \theta_{0} + k_{1} \sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta_{0}}},$$
(22)

$$\rho_{V}' = \frac{k_{3}^{2} \sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta_{1}} - k_{2}^{2} \sqrt{k_{3}^{2} - k_{1}^{2} \sin^{2} \theta_{1}}}{k_{3}^{2} \sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta_{1}} + k_{2}^{2} \sqrt{k_{3}^{2} - k_{1}^{2} \sin^{2} \theta_{1}}},$$
(23)

$$\tau_{V} = \frac{2k_{2}^{2} \cos \theta_{0}}{k_{2}^{2} \cos \theta_{0} + k_{1} \sqrt{k_{2}^{2} - k_{1}^{2} \sin^{2} \theta_{0}}},$$
 (24)

$$\tau_{V}' = \frac{2k_{2}^{2}\sqrt{k_{2}^{2} - k_{1}^{2}\sin^{2}\theta_{1}}}{k_{3}^{2}\sqrt{k_{2}^{2} - k_{1}^{2}\sin^{2}\theta_{1}} + k_{2}^{2}\sqrt{k_{3}^{2} - k_{1}^{2}\sin^{2}\theta_{1}}},$$
 (25)

for E-field parallel to plane of incidence.

The reflection coefficients (R_H) for multiply reflected waves in a stratified medium are shown in figures 12, 13, and 14 (eq (18) through (21)). Figures 15, 16, and 17 show R_V for multiply reflected waves (eq (22) through (25). Here, the depth of medium 2 is 1/2, 1, and 2 m, respectively. Media 1 and 3 are considered infinite. The propagation constant k_1 is that of free space. Constant k_2 was generated from the variable regional parameter equation and k_3 was generated using the network model. The angle of incidence is 60° .

As can be expected, for the multiply reflected wave, the lower frequency components are more readily transmitted through the soil/soil boundary. At higher frequencies, a declining magnitude is due to increased attenuation in addition to increased soil conductivity.

Since the properties of the upper stratification below 10⁵ Hz are not known, and the properties of the lower stratification are only conjectured to follow the universal network model, this analysis is not included in the final analysis of the reflected pulse; however, it is discussed here to show how a homogeneous model which uses either the universal network model or the variable regional parameter model may deviate from a possible real situation.

Figure 12. Magnitude of multiple reflection coefficient ($R_{\rm H}$) for a two-layer earth. Varying-parameter model is used for upper layer (0.5 m thick), and network model is used for lower layer (infinite half plane).

Figure 13. Magnitude of multiple reflection coefficient (R_H) for a two-layer earth. Varying-parameter model is used for upper layer (1 m thick), and network model is used for lower layer (infinite half plane).

Figure 14. Magnitude of multiple reflection coefficient (R_H) for a two-layer earth. Varying-parameter model is used for upper layer (2 m thick), and network model is used for lower layer (infinite half plane).

Figure 15. Magnitude of multiple reflection coefficient (R_V) for a two-layer earth. Varying-parameter model is used for upper layer (0.5 m) thick), and network model is used for lower layer (infinite half plane).

Figure 16. Magnitude of multiple reflection coefficient (R_V) for a two-layer earth. Varying-parameter model is used for upper layer (1 m thick), and network model is used for lower layer (infinite half plane).

Figure 17. Magnitude of multiple reflection coefficient (R_V) for a two-layer earth. Varying-parameter model is used for upper layer (2 m thick), and network model is used for lower layer (infinite half plane).

4. ERROR ANALYSIS

A convenient way to represent the total energy on a per ohm basis is by integrating the magnitude of the spectral density over the range of frequencies of interest:

$$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} |E(\omega)|^2 d\omega . \qquad (26)$$

The energy difference between two real spectra is

$$\frac{1}{\pi} \int_0^{\infty} |E(\omega)|^2 - |\tilde{E}(\omega)|^2 d\omega . \qquad (27)$$

Here, $E(\omega)$ represents the spectrum of the total E field of the signal used as the basis for analysis, and $\tilde{E}(\omega)$ is the approximating signal. The percentage of error (P_e) is

$$P_{e} = \frac{\int_{0}^{\infty} \left\{ \left| E(\omega) \right|^{2} - \left| \overline{E}(\omega) \right|^{2} \right\} d\omega}{\int_{0}^{\infty} \left| E(\omega) \right|^{2} d\omega} \times 100\% \qquad (28)$$

Since it is not possible to numerically integrate over the entire spectrum, the analysis will include the extrapolated spectrum of 10^5 to 10^9 Hz in which the variable parameter model is valid. Also, to eliminate the confusion or cancellation due to phase shift caused by the delay of the reflected wave, the observer is placed an incremental distance above the earth's surface. Here also, the analysis is done for zero polarization (i.e., $R_{\rm V}$ is not used). Table 2 lists the percentages of error between the total energies of waves above soil modeled by the variable-parameter model and soil modeled by the network model with the variable-parameter model as the standard.

The values show that the spectra $E(\omega)$ and $\tilde{E}(\omega)$ are displaced from each other and will probably give values for P_e which will be no less than 50 percent.

Another model which is often used for calculating propagation constants and reflection coefficients is the constant-parameter model. This model, as the name implies, assumes that the conductivity and dielectric constant are constant over the entire spectrum of frequencies and range of possible moisture contents. Typical values for these parameters are $\sigma = 7$ mmho/m and $\varepsilon_r = 15$ for the Woodbridge Research Facility. The values for the percentage of error are listed in table 3.

These values indicate that by judicious selection of σ and ϵ_r the percentage of error can be reduced. However, some error is inevitable because the spectrum predicted by the constant-parameter model will have a sharper roll-off, as demonstrated in the comparison of the three models given in figure 18.

TABLE 2. PERCENTAGE OF ERROR FOR VARIABLE-PARAMETER MODEL (STANDARD) AND NETWORK MODEL FOR VARIOUS MOISTURE CONTENTS

Moisture content (%)	Percentage of error (%)
5	59.0
10	-75.2
15	-80.4
20	-82.7

TABLE 3. PERCENTAGE OF ERROR FOR VARIABLE-PARAMETER MODEL (STANDARD) AND CONSTANT-PARAMETER MODEL FOR VARIOUS MOISTURE CONTENTS

Moisture content (%)	Percentage of error (%)
5	68.9
10	63.0
15	54.4
20	43.8

Figure 18. Comparison between reflection coefficient as predicted by varying regional parameter model, network model (both at 10-percent moisture), and constant-parameter model (conductivity = 7 mmho/m, dielectric constant = 15).

5. CONCLUSION

The percentage of error for the energy difference between two signals was minimized by using the constant-parameter model. This, however, does not mean that the constant-parameter model is the best possible method. The spectra of the reflected wave had a sharper roll-off than either the variable-parameter model or the network model. This means that there will be some minimum error which cannot be eliminated.

If there were data between 10² and 10⁶ Hz, the network model could be altered to more closely approximate the true nature of the soil. A convenient method for obtaining the soil parameter at any frequency and moisture content would then exist. It could conceivably minimize the percentage error below 10 percent.

However, the problem generated by the multiple reflection from a stratified medium would still remain. The only solution for this would be to follow the stated equations for multiple reflections after the lower stratification has been characterized by extensive field measurements.

LITERATURE CITED

- (1) J. H. Scott, Electrical and Magnetic Properties of Rock and Soil, U.S. Geological Survey, Note 18 (1966).
- (2) C. L. Longmire, A Universal Impedance for Soils, Defense Nuclear Agency, DNA 3788T (1975).
- (3) J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Co. (1941).
- (4) M. A. Messier, The Effects of Ground Reflection on Observed EMP Waveforms, Defense Nuclear Agency, DNA 3370T (1974).
- (5) E. D. Sunde, Earth Conduction Effects in Transmission Systems, D. Van Nostrand Co. Inc. (1968).
- (6) M. V. Klein, Optics, T. Wiley and Sons Inc. (1970).

DISTRIBUTION

ADMINISTRATOR
DEFENSE TECHNICAL INFORMATION CENTER
ATTN DTIC-DDA (12 COPIES)
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314

DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSIS
ACTIVITY
ATTN DRXSY-MP
ABERDEEN PROVING GROUND, MD 21005

DIRECTOR
US ARMY BALLISTIC RESEARCH
LABORATORY
ATTN DRDAR-TSB-S (STINFO)
ABERDEEN PROVING GROUND, MD 21005

US ARMY ELECTRONICS TECHNOLOGY & DEVICES LABORATORY ATTN DELET-DD ATTN DELSD-L FT MONMOUTH, NJ 07703

HQ, USAF/SAMI WASHINGTON, DC 20330

TELEDYNE BROWN ENGINEERING CUMMINGS RESEARCH PARK ATTN DR. MELVIN L. PRICE, MS-44 HUNTSVILLE, AL 35807

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD
ATTN TIO
ARLINGTON, VA 22209

FEDERAL EMERGENCY MANAGEMENT AGENCY
500 C STREET SW
ATTN JAMES W. KERR
MITIGATION & RESEARCH
WASHINGTON, DC 20472

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
ATTN CODE C312
ATTN CODE C313
WASHINGTON, DC 20305

DEFENSE COMMUNICATIONS ENGINEERING
CENTER
1860 WIEHLE AVENUE
ATTN CODE R720, C. STANSBERRY
ATTN CODE R123, RSCH LIB
ATTN CODE R400
RESTON, VA 22090

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
ATTN RDS-3A
ATTN RDS-3A4, POMPONIO PLAZA
WASHINGTON, DC 20301

DIRECTOR
DEFENSE NUCLEAR AGENCY
ATTN RAEV, ELECTRONICS VULNERABILITY
DIV
ATTN TITL, TECHNICAL LIBRARY DIV
ATTN RAEE, EMP EFFECTS DIV
WASHINGTON, DC 20305

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
ATTN FCPR
ATTN FCSPM, J. SMITH
ATTN FCLMC
KIRKLAND AFB, NM 87115

NATIONAL COMMUNICATIONS SYSTEM OFFICE OF THE MANAGER DEPARTMENT OF DEFENSE ATTN NCS-TS, CHARLES D. BODSON WASHINGTON, DC 20305

DIRECTOR
NATIONAL SECURITY AGENCY
DEPARTMENT OF DEFENSE
ATTN R-52, O. VAN GUNTEN
ATTN S232, D. VINCENT
FT MEAD, MD 20755

UNDER SECRETARY OF DEF FOR RSCH & ENGRG DEPARTMENT OF DEFENSE ATTN G. BARSE ATTN S & SS (OS) WASHINGTON, DC 20301

COMMANDER
BMD SYSTEM COMMAND
DEPARTMENT OF THE ARMY
PO BOX 1500
ATTN BMDSC-AOLIB
HUNTSVILLE, AL 35807

COMMANDER
ERADCOM TECHNICAL SUPPORT ACTIVITY
DEPARTMENT OF THE ARMY
ATTN TECHNICAL LIBRARY DIV
FT MONMOUTH, NJ 07703

COMMANDER
US ARMY COMM-ELEC ENGRG INSTAL
AGENCY
ATTN CCC-PRSO-S
ATTN CCC-CED-SES
FT HUACHUCA, AZ 85613

COMMANDER
US ARMY COMMUNICATIONS COMMAND
COMBAT DEVELOPMENT DIVISION
ATTN ATSI-CD-MD
FT HUACHUCA, AZ 85613

CHIEF

US ARMY COMMUNICATIONS
SYS AGENCY
ATTN CCM-RD-T
ATTN CCM-AD-SV
FT MONMOUTH, NJ 07703

PROJECT MANAGER
US ARMY COMMUNICATIONS RES
& DEV COMMAND
ATTN DRCPM-ATC
ATTN DRCPM-TDS-BSI
FT MONMOUTH, NJ 07703

US ARMY INTEL THREAT
ANALYSIS DETACHMENT
ROOM 2201, BLDG A
ARLINGTON HALL STATION
ATTN RM 2200, BLDG A
ARLINGTON, VA 22212

COMMANDER

US ARMY TEST & EVALUATION COMMMAND ATTN DRSTE-FA ABERDEEN PROVING GROUND, MD 21005

COMMMANDER

WHITE SANDS MISSILE RANGE DEPARTMENT OF THE ARMY ATTN STEWS-TE-AN, J. OKUMA WHITE SANDS MISSILE RANGE, NM 88002

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
ATTN PME 117-215
WASHINGTON, DC 20360

COMMANDER

NAVAL OCEAN SYSTEMS CENTER ATTN CODE 015, C. FLETCHER ATTN CODE 7240, S. W. LICHTMAN SAN DIEGO, CA 92152

DIRECTOR

NAVAL RESEARCH LABORATORY
ATTN CODE 4104, EMANUAL L. BRANCATO
ATTN CODE 2627, DORIS R. FOLEN
ATTN CODE 6623, RICHARD L. STATLER
ATTN CODE 6624
WASHINGTON, DC 20375

COMMANDER

NAVAL SURFACE WEAPONS CENTER ATTN CODE WA51RH, RM 130-108 ATTN CODE F32, EDWIN R. RATHBURN WHITE OAK, SILVER SPRING, MD 20910

COMMANDER
NAVAL SURFACE WEAPONS CENTER
DAHLGREN LABORATORY
ATTN CODE DF-56
DALHGREN, VA 22448

AF WEAPONS LABORATORY, AFSC
ATTN NTN
ATTN NT
ATTN EL, CARL E. BAUM
ATTN ELXT
ATTN SUL
ATTN CA
ATTN ELA, J. P. CASTILLO
ATTN ELP
ATTN ELT, W. PAGE
ATTN NXS
KIRTLAND AFB, NM 87117

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
PO BOX 808
ATTN TECH INFO DEPT
ATTN L-06, T. DONICH
ATTN L-545, D. MEEKER
ATTN L-156, E. MILLER
ATTN L-10, H. KRUGER
ATTN FCPRL
ATTN H. S. CABAYAN
LIVERMORE, CA 94550

LOS ALAMOS SCIENTIFIC LABORATORY PO BOX 1663 ATTN BRUCE W. NOEL ATTN CLARENCE BENTON LOS ALAMOS, NM 87545

SANDIA LABORATORIES
PO BOX 5800
ATTN C. N. VITTITOE
ATTN R. L. PARKER
ATTN ELMER F. HARTMAN
ALBUQUERQUE, NM 87115

AEROSPACE CORP
PO BOX 92957
ATTN C. B. PEARLSTON
ATTN IRVING M. GARFUNKEL
ATTN JULIAN REINHEIMER
ATTN LIBRARY
ATTN CHARLES GREENHOW
LOS ANGELES, CA 90009

AGABIAN ASSOCIATES
250 NORTH NASH STREET
ATTN LIBRARY
EL SEGUNDO, CA 90245

AVCO RESEARCH & SYSTEMS GROUP 201 LOWELL STREET WILMINGTON, MA 01887

BATTELLE MEMORIAL INSTITUTE 505 KING AVENUE ATTN EUGENE R. LEACH COLUMBUS, OH 43201

BDM CORP 7915 JONES BRANCH DR ATTN CORPORATE LIBRARY MCLEAN, VA 22102

BDM CORP
PO BOX 9274
ALBUQUERQUE INTERNATIONAL
ATTN LIB
ALBUQUERQUE, NM 87119

BENDIX CORP RESEARCH LABORATORIES DIVISION BENDIX CENTER ATTN MAX FRANK SOUTHFIELD, MI 48075

BOEING COMPANY
PO BOX 3707

ATTN HOWARD W. WICKLEIN
ATTN D. E. ISBELL
ATTN DAVID KEMLE
ATTN B. C. HANRAHAN
ATTN KENT TECH LIB
SEATTLE, WA 98124

BROWN ENGINEERING COMPANY, INC CUMMINGS RESEARCH PARK ATTN FRED LEONARD HUNTSVILLE, AL 35807

BURROUGHS CORP FEDERAL & SPECIAL SYSTEMS GROUP CENTRAL AVE & ROUTE 252 PO BOX 517 ATTN ANGELO J. MAURIELLO PAOLI, PA 19301

CALSPAN CORP PO BOX 400 ATTN TECH LIBRARY BUFFALO, NY 14225

CINCINNATI ELECTRONICS CORP 2630 GLENDALE - MILFORD ROAD ATTN LOIS HAMMOND CINCINNATI, OH 45241

COMPUTER SCIENCES CORP 6565 ARLINGTON BLVD ATTN RAMONA BRIGGS FALLS CHURCH, VA 22046

COMPUTER SCIENCES CORP 1400 SAN MATEO BLVD, SE ATTN LIBRARY ATTN ALVIN SCHIFF ALBUQUERQUE, NM 87108

CONTROL DATA CORP PO BOX 0 ATTN JACK MEEHAN MINNEAPOLIS, MN 55440 DIKEWOOD CORP 1613 UNIVERSITY BLVD, NE ATTN TECH LIB ATTN L. WAYNE DAVIS ALBUQUERQUE, NM 87102

DIKEWOOD CORP 2716 OCEAN & PARK BLVD, SUITE 3000 ATTN K. LEE SANTA MONICA, CA 90405

E-SYSTEMS, INC
GREENVILLE DIVISION
PO BOX 1056
ATTN JOLETA MOORE
GREENVILLE, TX 75401

EFFECTS TECHNOLOGY, INC. 5383 HOLLISTER AVENUE ATTN S. CLOW SANTA BARBARA, CA 93111

EG&G WASHINGTON ANALYTICAL SERVICES
CENTER, INC
PO BOX 10218
ATTN C. GILES
ALBUQUERQUE, NM 87114

FAIRCHILD CAMERA & INSTRUMENT CORP 464 ELLIS STREET ATTN DAVID K. MYERS MOUNTAIN VIEW, CA 94040

FORD AEROSPACE & COMMUNICATIONS CORP 3939 FABIAN WAY ATTN TECH LIB PALO ALTO, CA 94303

FORD AEROSPACE & COMMUNICATIONS
OPERATIONNS
FORD & JAMBOREE ROADS
ATTN KEN C. ATTINGER
NEWPORT BEACH, CA 92663

GENERAL DYNAMICS CORP ELECTRONICS DIVISION PO BOX 81127 ATTN RSCH LIB SAN DIEGO, CA 92138

GENERAL DYNAMICS CORP INTER-DIVISION RESEARCH LIBRARY KEARNY MESA PO BOX 80986 ATTN RSCH LIB SAN DIEGO, CA 92138

GENERAL ELECTRIC CO.-TEMPO
CENTER FOR ADVANCED STUDIES
816 STATE STREET (PO DRAWER QQ)
ATTN DASIAC
ATTN ROYDEN R. RUTHERFORD
ATTN WILLIAM MCNAMERA
SANTA BARBARA, CA 93102

GENERAL ELECTRIC COMPANY AEROSPACE ELECTRONICS SYSTEMS FRENCH ROAD ATTN CHARLES M. HEWISON UTICA, NY 13503

GENERAL ELECTRIC COMPANY PO BOX 5000 ATTN TECH LIB BINGHAMTON, NY 13902

GENERAL ELECTRIC CO.-TEMPO ALEXANDRIA OFFICE HUNTINGTON BUILDING, SUITE 300 2560 HUNTINGTON AVENUE ATTN DASIAC ALEXANDRIA, VA 22303

GENERAL RESEARCH CORP SANTA BARBARA DIVISION PO BOX 6770 ATTN TECH INFO OFFICE SANTA BARBARA, CA 93111

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION
ATTN RSCH SECURITY COORDINATOR
FOR HUGH DENNY
ATLANTA, GA 30332

GRUMMAN AEROSPACE CORP SOUTH OYSTER BAY ROAD ATTN L-01 35 BETHPAGE, NY 11714

GTE SYLVANIA, INC ELECTRONICS SYSTEMS GRP-EASTERN DIV 77 A STREET ATTN CHARLES A. THORNHILL, LIBRARIAN ATTN LEONARD L. BLAISDELL NEEDHAM HEIGHTS, MA 02194

GTE SYLVANIA, INC

189 B STREET

ATTN CHARLES H. RAMSBOTTOM

ATTN DAVID D. FLOOD

ATTN EMIL P. MOTCHO'

ATTN H & V GROUP, A. NUREFORA

ATTN J. WALDRON

NEEDHAM HEIGHTS, MA 02194

HARRIS CORP
HARRIS SEMICONDUCTOR DIVISION
PO BOX 883
ATTN V PRES & MCG PRGMS DIV
MELBOURNE, FL 32901

HAZELTINE CORP PULASKI ROAD ATTN TECH INFO CTR, M.WAITE GREENLAWN, NY 11740 HONEYWELL INC
AVIONICS DIVISION
2600 RIDGEWAY PARKWAY
ATTN S & RC LIB
ATTN RONALD R. JOHNSON
MINNEAPOLIS, MN 55413

HONEYWELL INC AVIONICS DIVISION 13350 U.S. HIGHWAY 19 NORTH ATTN MS 725-5, STACEY H. GRAFF ATTN W. E. STEWART ST PETERSBURG, FL 33733

HUGHES AIRCRAFT COMPANY CENTINELA & TEALE ATTN JOHN B. SINGLETARY ATTN CTDC 6/E110 ATTN KENNETH R. WALKER CULLVER CITY, CA 90230

IIT RESEARCH INSTITUTE 10 WEST 35TH STREET ATTN IRVING N. MINDEL ATTN JACK E. BRIDGES CHICAGO, IL 60616

INTL TEL & TELEGRAPH CORP 500 WASHINGTON AVENUE ATTN TECHNICAL LIBRARY ATTN ALEXANDER T. RICHARDSON NUTLEY, NJ 07110

IRT CORP
PO BOX 81087
ATTN C. B. WILLIAMS
ATTN DENNIS SWIFT
SAN DIEGO, CA 92138

JAYCOR
11011 TORREYANA ROAD
PO BOX 85154
ATTN ERIC P. WENAAS
ATTN RALPH H. STAHL
SAN DIEGO, CA 92138

JAYCOR
205 S. WHITTING STREET, SUITE 500
ATTN LIB
ALEXANDRIA, VA 22304

KAMAN SCIENCES CORP
1500 GARDEN OF THE GODS ROAD
ATTN ALBERT P. BRIDGES
ATTN W. FOSTER RICH
ATTN WALTER E. WARE
ATTN FRANK H. SHELTON
ATTN JERRY I. LUBELL
ATTN PHIL TRACY
COLORADO SPRINGS, CO 80907

LITTON SYSTEMS, INC DATA SYSTEMS DIVISION 8000 WOODLEY AVENUE ATTN EMC GP

LITTON SYSTEMS, INC (Cont'd) ATTN M848-61 VAN NUYS, CA 91409

LITTON SYSTEMS, INC
AMERCOM DIVISION
5115 CALVERT ROAD
ATTN J. SKAGGS
COLLEGE PARK, MD 20740

LOCKHEED MISSILES & SPACE CO, INC
PO BOX 504
ATTN I. ROSSI
ATTN SAMUEL I. TAIMUTY
ATTN H. E. THAYN
ATTN GEORGE F. HEATH
ATTN BENJAMIN T. KIMURA
SUNNYVALE, CA 94086

LOCKHEED MISSILE & SPACE CO, INC 3251 HANOVER STREET ATTN TECH INFO CTR D/COLL PALO ALTO, CA 94304

MARTIN MARIETTA CORP ORLANDO DIVISION PO BOX 5837 ATTN MONA C. GRIFFITH ORLANDO, FL 32805

MCDONNELL DOUGLAS CORP PO BOX 516 ATTN TOM ENDER ST LOUIS, MO 63166

MCDONNELL DOUGLAS CORP 5301 BOLSA AVENUE ATTN STANLEY SCHNEIDER ATTN TECH LIBRARY SERVICES HUNTINGTON BEACH, CA 92647

MISSION RESEARCH CORP PO DRAWER 719 ATTN EMP GROUP ATTN WILLIAM C. HART ATTN C. LONGMIRE SANTA BARBARA, CA 93102

MISSION RESEARCH CORP
PO BOX 7816
ATTN WERNER STARK
ATTN ROY STRAYER, JR
COLORADO SPRINGS, CO 80933

MITRE CORP
PO BOX 208
ATTN M. F. FITZGERALD
BEDFORD, MA 01730

NORDEN SYSTEMS, INC HELEN STREET ATTN TECHNICAL LIBRARY NORWALK, CT 06856

NORTHROP RESEARCH TECHNOLOGY CENTER ONE RESEARCH PARK ATTN LIBRARY PALOS VERDES PENN, CA 90274

NORTHROP CORP ELECTRONIC DIVISION 2301 WEST 120TH STREET ATTN LEW SMITH ATTN RAD EFFECTS GRP HAWTHORNE, CA 90250

PHYSICS INTERNATIONAL COMPANY 2700 MERCED STREET ATTN DOC CON SAN LEANDRO, CA 94577

R&D ASSOCIATES
PO BOX 9695
ATTN S. CLAY ROGERS
ATTN CHARLES MO
ATTN RICHARD R. SCHAEFER
ATTN DOC CON
ATTN M. GROVER
ATTN C. MACDONALD
MARINA DEL REY, CA 90291

RAND CORP 1700 MAIN STREET ATTN LIB-D ATTN W. SOLLFREY SANTA MONICA, CA 90406

RAYTHEON COMPANY HARTWELL RD ATTN GAJANAN H. JOSHI BEDFORD, MA 01730

RAYTHEON COMPANY
528 BOSTON POST ROAD
ATTN HAROLD L. FLESCHER
SUDBURY, MA 01776

RCA CORP
CAMDEN COMPLEX
FRONT & COOPER STREETS
ATTN OLIVE WHITEHEAD
ATTN R. W. ROSTROM
CAMDEN, NJ 08012

ROCKWELL INTERNATIONAL CORP PO BOX 3105 ATTN J. L. MONROE ATTN V. J. MICHEL ATTN D/243-068, 031-CA31 ANAHEIM, CA 92803

SANDERS ASSOCIATES, INC 95 CANAL STREET ATTN 1-6270, R. G. DESPATHY, SR P E NASHUA, NH 03060

SCIENCE APPLICATIONS, INC PO BOX 277 ATTN FREDERICK M. TESCHE BERKELEY, CA 94701

SINGER COMPANY
1150 MC BRIDE AVENUE
ATTN TECH INFO CTR
LITTLE FALLS, NJ 07424

SPERRY RAND CORP SPERRY MICROWAVE ELECTRONICS PO BOX 4648 ATTN MARGARET CORT CLEARWATER, FL 33518

SPERRY RAND CORP SPERRY DIVISION MARCUS AVENUE ATTN TECH LIB GREAT NECK, NY 11020

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
ATTN ARTHUR LEE WHITSON
MENLO PARK, CA 94025

SYSTEMS, SCIENCE & SOFTWARE, INC PO BOX 1620 ATTN ANDREW R. WILSON LA JOLLA, CA 92038

TEXAS INSTRUMENTS, INC PO BOX 6015 ATTN TECH LIB ATTN DONALD J. MANUS DALLAS, TX 75265

TRW DEFENSE & SPACE SYS GROUP ONE SPACE PARK ATTN O. E. ADAMS ATTN J. PENAR ATTN W. GARGARO REDONDO BEACH, CA 90278 UNITED TECHNOLOGIES CORP HAMILTON STANDARD DIVISION BRADLEY INTERNATIONAL AIRPORT ATTN CHIEF ELEC DESIGN WINDSOR LOCKS, CT 06069

WESTINGHOUSE ELECTRIC CORP ADVANCED ENERGY SYSTEMS DIV PO BOX 10864 ATTN TECH LIB PITTSBURGH, PA 15236

US ARMY ELECTRONICS RESEARCH
& DEVELOPMENT COMMAND
ATTN TECHNICAL DIRECTOR, DRDEL-CT
ATTN R. HARMAN, DRDEL-MA

HARRY DIAMOND LABORATORIES ATTN CO/TD/TSO/DIVISION DIRECTORS ATTN RECORD COPY, 81200 ATTN HDL LIBRARY, 81100 (3 COPIES) ATTN HDL LIBRARY, 81100 (WOODBRIDGE) ATTN TECHNICAL REPORTS BRANCH, 81300 ATTN LEGAL OFFICE, 97000 ATTN CHAIRMAN, EDITORIAL COMMITTEE ATTN CHIEF, 13000 ATTN CHIEF, 21000 ATTN CHIEF, 21100 ATTN CHIEF, 21200 ATTN CHIEF, 21300 (10 COPIES) ATTN CHIEF, 21400 ATTN CHIEF, 21500 ATTN CHIEF, 22000 ATTN CHIEF, 22100 ATTN CHIEF, 22300 ATTN CHIEF, 22800 ATTN CHIEF, 22900 ATTN CHIEF, 20240 ATTN CHASE, R., 21100 ATTN VALLIN, J., 22100 ATTN LEPOER, K., 21100 ATTN REYZER, R., 21300

ATTN CUNEO, A., 21100

ATTN HILL, N., 21300

#